16 research outputs found

    Adaptive Routing Strategies for Modern High Performance Networks

    Full text link
    Today’s scalable high-performance applications heavily depend on the bandwidth characteristics of their commu-nication patterns. Contemporary multi-stage interconnec-tion networks suffer from network contention which might decrease application performance. Our experiments show that the effective bisection bandwidth of a non-blocking 512-node Clos network is as low as 38 % if the network is routed statically. In this paper, we propose and ana-lyze different adaptive routing schemes for those networks. We chose Myrinet/MX to implement our proposed routing schemes. Our best adaptive routing scheme is able to in-crease the effective bisection bandwidth to 77 % for 512 nodes and 100 % for smaller node counts. Thus, we show that our proposed adaptive routing schemes are able to im-prove network throughput significantly.

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Contributions au support de communication des serveurs vidéo distribués suivant une architecture réseau de type grappe de PC

    No full text
    Cette thĂšse propose d'Ă©tudier les besoins et les contraintes des serveurs vidĂ©o par rapport au support systĂšme et rĂ©seau des grappes de PC et de proposer des solutions afin d'amĂ©liorer les performances limitĂ©es des rĂ©alisations existantes. Les applications de services de flux multimĂ©dia, et de vidĂ©o en particulier, sont extrĂȘmement gourmandes en ressources et s'apparentent sur de nombreux points, Ă  des applications de calculs haute performance plus classiqueS. Ainsi, il n'est pas surprenant que l'avĂšnement des architectures de type grappe de PC, constituĂ©s de stations de travail et de rĂ©seaux d'interconnexions rapide, change la donne dans le monde des serveurs vidĂ©o. En effet, ils constituent une rĂ©elle alternative aux trĂšs onĂ©reuses machines multiprocesseurs pour la rĂ©alisation de serveurs vidĂ©o, performant, scalables et tolĂ©rants aux pannes. Pourtant, le dĂ©veloppement de tels serveurs n'est pas simple et soulĂšve de nombreux problĂšmes. Nous nous sommes limitĂ©s dans cette thĂšse Ă  quelques points sensibles qui restreignent considĂ©rablement les possibilitĂ©s de rĂ©alisation de serveurs vidĂ©o sur grappes de PC Ă  ce jour : les communications entre processus Ă  l'intĂ©rieur d'une mĂȘme machine multiprocesseurs, la mise Ă  jour d'Ă©vĂšnements distribuĂ©s par des diffusions de petits messages, les accĂšs distant de stockage d'une autre machine via le rĂ©seau d'interconnexion. Toutes nos contributions sont utiles Ă  une implantation d'un serveurs vidĂ©o parallĂšle en grappe performant, scalable et tolĂ©rant aux pannes. En effet, nos travaux augmentent les performances, au niveau de l'application, de certaines ressources telles le bus mĂ©moire ou le sous-systĂšme de masse. De plus, nos rĂ©sultats concourent au support d'une montĂ©e en charge linĂ©aire du serveur sans rĂ©plication des donnĂ©es.LYON1-BU.Sciences (692662101) / SudocSudocFranceF

    A Software Suite for High-Performance Communications on Clusters of SMPs

    No full text
    International audienceA cluster, by opposition to a parallel computer, is a set of separate workstations interconnected by a high-speed network. The performances one can get on a cluster heavily depend on the performances of the lowest communication layers. In this paper, we address the special case where the cluster contains multi-processor machines. These shared-memory multi-processors desktop machines (SMPs) with 2 or 4 processors are now becoming very popular and present a high performance/price ratio. We present a software suite for achieving high-performance communications on a Myrinet-based cluster: BIP, BIP-SMP and MPI-BIP. The software suite supports single-processor (Intel PC and Digital Alpha) and multi-processor machines, as well as any combination of the two architectures
    corecore